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Abstract

Many computational tasks require the determination of the Jacobian matrix, at a
given argument, for a large nonlinear system of equations. Calculation or approximation
of a Newton step is a related task. The development of robust automatic differentiation
(AD) software allows for “painless” and accurate calculation of these quantities;
however, straightforward application of AD software on large-scale problems can require
an inordinate amount of computation. Fortunately, large-scale systems of nonlinear
equations typically exhibit either sparsity or structure in their Jacobian matrices.
In this paper, we proffer general approaches for exploiting sparsity and structure to
yield efficient ways to determine Jacobian matrices (and Newton steps) via automatic
differentiation.
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1 Introduction

A fundamental computation with regard to a nonlinear system, F: ®™ — R™, is the
evaluation of the Jacobian matrix of F at any given argument z: J (z) € R™*". Given a
computer code to evaluate F(z), the techniques of automatic differentiation (AD) can be
used to compute J(z). There are two basic modes of automatic differentiation, forward
and reverse, e.g., [Griewank1990a], [Griewank1993a]. Forward mode AD yields J in time
proportional to n-w(F), where w(F) is the number of flops to evaluate F(z). Alternatively,
reverse mode AD yields J(z) in time proportional to m - w(F).

For large problems the computation of J by a straightforward application of either
mode of AD can be unacceptably expensive. The purpose of this paper is to show how it is
possible to dramatically lower the cost of computing J by exploiting structure and sparsity
in the application of AD.

Recently, techniques for the efficient determination of sparse Jacobian matrices J, via
AD, have been developed [Averick1994a], [Coleman1995a], [Hossain1995a]. The bi-coloring
approach of Coleman and Verma [Coleman1995a], as discussed in Section 2, rests on the
observation that it is usually possible to define “thin” matrices V, W such that the nonzero
elements of J can be readily extracted from the pair (WTJ ,JV). Suppose W is an m-by-tw
matrix and V is an n-by-ty matrix. The matrix W7TJ can be computed, directly, using AD
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in the reverse mode in time proportional to ty - w(F); the matrix JV can be computed,
directly, using AD in the forward mode in #y -w(F) time.
For example consider the following n-by-n J acobian, symmetric in structure but not in

value:
old A A A
o °©
(1) J = O <
O <o
] <

Define V = (e1,62 + €3 + e4 + es); W = (e1), where we follow the usual convention
of representing the ith column of the identity matrix with €;. Clearly elements O © are
directly determined from the product JV; elements A are directly determined from the
product WTJ. Hence the work required to detemine .J by computing wty, g V) using AD
in reverse and forward mode respectively, is 3 - w(F), regardless of n.

Unfortunately, not all large systems exhibit sparse Jacobian matrices. For example, the
following composite structure is common in large-scale problems:

Flz) = F(y)
where y is the solution to a large sparse positive definite system,
Ay = 17’(:1:),

and A = A(z). The Jacobian of F(z), J(z), is almost always dense even when matrices
J,J, and Azy are sparse (which is typical) where J is the Jacobian of F with respect to y,
J is the J acobian of F, and Azy is the Jacobian of the mapping A(z)y (with Tespect to z).
To see this consider that

(2) J o= JATUT - Agy).

It is the application of A1 that causes matrix J to be dense — this will almost surely be
the case unless 4~1 jg very special, e.g., diagonal.

“Solve”  for y, : y1—F(z) = 0
Solve for y, : Ay—y1 = 0
“Solve” for 2 . z—F(y,) = 0.

However, this program can be viewed as a nonlinear system of equations in (z,v1, y2) with
corresponding Newton equations:

bz 0
(3) JE 63/1 = 0 ’
by, —F(z)
where ~
-J I 90
JE = Al-yz -1 A
0 0 J
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Here is a key point: the “extended” Jacobian matrix Jg is sparse and clearly sparse
AD-techniques, e.g., [Averick1994al, [Coleman1995a], [Hossain1995a], can be applied with
respect to B
n - F(z)
Fp(z,9)=| Alz)g2— %
- F(y2)

to efficiently determine Jg. For example, the work required by the bi-coloring technique
developed in [Coleman1995a] is x -w(Fg) = X* w(F) where x is a “bi-chromatic number”
dependent on the sparsity of Jg. Typically, x << min(m,n). Additional linear algebra
work is needed to extract J from Jg: compute the Schur complement (introducing zero
matrices in positions (3,2),(3,3)) and obtain,

J = JATYJ - Ayl

If it is the Newton step 6, = —J 1F(z) that is required, then it is not necessary
to explicitly form J. For example the extended system (3) can be solved directly. This
can afford significant savings. To illustrate, consider the following experiment. We define
a composite function F(z) following the form described above. The functions F and F
are defined to be the Broyden [Broyden1965a] function (the Jacobian is tridiagonal). The
structure of A is based on the 5-point Laplacian defined on a regular /n-by-{/n grid. Each
nonzero element of A(z) depends on z in a trivial way such that the stucture of matrix
Ay -v, for an arbitrary vector v, is equal to the structure of matrix A. In particular, for all
(3,5), i # j where A;; is nonzero the function A;j(z) is defined, Ai; = z;.

Figure 1 plots the time to calculate the Newton step, given Jg, via the formulation of J
using (2) versus the computation of the Newton step using a direct sparse solve for equation
(3). Experiments were perfomed in MATLAB, with sparse system solving implemented
using the “backslash” function. All matrices are sparse in this example except for the final
Jacobian matrix J. Clearly it pays to avoid the formulation of J and the advantage grows
with n.
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Fic. 1. Comparison of two approaches to calculate the Newton step

It is also possible to compute an approximate Newton step, without forming J, using an
iterative solver. Specifically, if a sparse factorization of A is computed, an iterative solver
involving only matrix-vector products can be applied to

(JAY[J - Agyl)s = —F(z).
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The main purpose of this paper is to illustrate how these jdeas can be applied more
generally: in many cases the natural “coarse-grained” program yields a sparse “extended”
Jacobian matrix which in turn, can be efficiently computed by sparse AD-techniques.

2 Calculation of Sparse Jacobians via Bi-coloring
New techniques for the efficient computation of Sparse Jacobian matrices are developed in
[Averick1994a], [Coleman1995a), [Hossain1995a). In this section we briefly highlight the
approach proposed in [Coleman1995a], coined “bi-coloring”.

Bi-coloring is an attempt to define “thin” matrices V and W, based on the the “coloring”

an arbitrary n-by-t;, matrix V, product JV can be directly calculated using automatic
differentiation in the “forward mode”; given an arbitrary m-by-ty matrix W, the product
WTJ can be calculated using automatic differentiation in the “reverse mode”, e.g.,
[Griewa,nk1990a], [Griewank1993a]. The motivation for the bi-coloring approach stems from
the sparse finite-differencing literature [Coleman1986a], [Coleman1984a], [Coleman1985a],
[Coleman1984b], [Coleman1984c], [Curtis1974a], where graph coloring is used to partition
the columans of a sparse Jacobian matrix J and subsequently define 3 matrix V such that
J can be determined from the product JV. However, matrix V is not guaranteed to be
thin, even if J has considerable sparsity: consider a sparse matrix J with a single dense

dense column.

Bi-coloring circumvents the dense row/dense column problem as illustrated in (1).
In [Coleman1995a,] bi-coloring approaches are proposed that allow for both the direct
calculation of J — the non-zero elements of J are are extracted for the AD-computed
products (W7Tj, j V) directly, without further computations — and determination by
substitution where the the non-zero elements of J are are extracted for the AD-computed
products (W7, j V) using a substitution process. The advantage of the latter is that
typically thinner matrices V,W can be defined and therefore the application of AD is less
costly; the disadvantage of determination by substitution is that the substitution Process
itself incurs round-off error. Hence, the computed Jacobian matrix is usually less accurate
than the directly determined Jacobian. N evertheless, as discussed in [Coleman1995a], the
loss of accuracy is usually minimal.

Computationa] experiments are reported in [Coleman1995a] which illustrate the effec-
tiveness of bi-coloring as opposed to strictly 1-sided schemes. A 1-sided scheme may be
column-based: partition the columns of J to define a thin matrix such that the non-zeroes
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function F.

Clearly on this set of sparsity structures bi-coloring is a significant win over 1-sided
calculations . Moreover, bi-coloring combined with determination by substitution represents
the least-cost approach. Additional experiments, with more detail, and further related
discussion is given in [Coleman1995a].

TABLE 1
Totals for LP Collection (http://www.netlib.org/lp/data)

Bi-coloring 1-sided Coloring
Direct Substitution | column TOW
337 270 1753 452

3 Structure

Our thesis can be summarized as follows. Large-scale nonlinear systems F(z) = 0 often
exhibit a natural lower Hessenberg form. Usually, an easy programmatic way to describe
F, at a high level, is to state this lower Hessenberg description, or program, Fg. The
corresponding Jacobian of Fg, Jg, is typically a sparse matrix: sparse AD techniques
can be applied to efficiently compute Jg. The Jacobian of F and/or the Newton step
6, = —J~1F(z) can subsequently be computed from JE. Two key points are:

e The matrix Jg, though larger than J, is usually considerably sparser.

¢ The high level program Fg is usually readily available to the user: it is often the most
natural way of expressing F'.

To be more precise, a natural way to evaluate the nonlinear systems z = F(z) is via
the lower Hessenberg program illustrated in Figure 2 where we assume equation % uniquely
determines 4, i = 1 : p. We take the point of view that the function Fg is explicitly

Solve for yy : Fi(z,y1) =0
Solve for vy : Fa(z,y1,y2) =0

Solve for y, : Fp(z,y1,Y2,---,Yp) =0
“Solve” for output z: z — Fppa(Z,y1,¥2,- > yp) = 0

FiGg. 2. A general structured computation

available, where
F
Fg = FZ
F,
Indeed, usually the component functions of Fg, Fj, ¢ =1:p, are conveniently available to
the user.
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Many well-known structured problems are covered by this view: e.g., partially-
separable functions, dynamical (recursive) systems, composite functions, various gradient
Computations. Examples are illustrated in Section 4.

The program in Figure 2 can be differentiated to give the extended Newton system:

bz 0
6:!/1 0
0y, -F
where
(5) Je =

If each “interior vector” y; is uniquely determined then the the super-diagonal of (5)
has nonsingular blocks, g{?, and ¢ is the Newton step 6, = —J‘IF(z).

We contend that JE will likely be Sparse, considerably sparse than J ; hence, sparse AD
techniques can be used to obtain Jg. The Jacobian matrix J can be computed from Jg by
zeroing the (2, 2)-block row in JE using block Gauss transformations. Matrix J shows up
in the (2,1) location after elimination of the (2,2)-block row.

If it is the Newton step that is required, and not matrix J per se, then there are two
natural alternatives to the explicit computation of J , given Jg. First, system (4) can
be solved directly using a direct sparse factorization!: this is clearly an attractive option
in some Cases, e.g., Figure 1. A second possibility is to perform the (2, 1)-elimination
symbolically to produce a “product form” expression for J, in the (2,1) location, which
could then be used in any iterative linear solver requiring only matrix-vector products. An
example of this latter possibility is given in the penultimate Paragraph in Section 1.

3.1 Gradient Computation

An important special case of Jacobian evaluation is the computation of the gradient of
a scalar valued function, f : R~ _, R. The gradient of f is merely the transpose of the
Jacobian of f; hence, the last “block row” of Jg in (5)is a single row vector. In general
the strategies discussed above cannot improve upon a direct reverse-mode application of
AD to evaluate the gradient, in terms of time, since the reverse mode computes V f(z) in
time proportional to w(f). However, unveiling underlying stucture as discussed above can
certainly help significantly if only forward-mode AD is to be used.

For example, consider the case where fisa partially separable function, f = fi+fo+
“t*+ fp, where f; : pn R,i=1: P, and each component function f; depends on only a

! Griewank [GriewanleQOa] has proposed a similar idea in a more extreme form: Fg is defined with
respect to all intermediate variables. The resulting extended Jacobian matrix JE is huge, but VEry sparse.

T ———
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low components of z. A natural way to evaluate f at a given argument « is to evaluate

fi(z)
f2(z)

F(z) =
fp(2)
and then sum the components of F(z). A program to do this can be written:

“Solve” for y:y—F(z) = 0
“Solve” for z: z—¢ely = 0.

_ -Jr I
JE - ( 0 eT ) .
Clearly Jg can be computed in time proportional to x7(Jr) - w(f) by applying the bi-
coloring/AD approach to F' to obtain Jg. This special case, the efficient determination of

a gradient of a partially separable function via the forward-mode of AD, is studied in detail
in [Bischof1995g].

In this case

4 Examples

We discuss three common classes of structured nonlinear systems. In each case the Jacobian
matrix is potentially dense; however, by differentiating the natural high-level program to
compute F, as discussed in Section 3, underlying sparsity can be exploited in the use of
AD tools. The result is often a dramatic increase in efficiency.

4.1 Composite Functions and Dynamical Systems
A composite function F': " — R™ can be written

F(z) = F(T,(Tpr(...(Ti(2)) .. ),

where, in general, functions F,T;,i = 1 : p are vector maps. Recursively applying the chain
rule yields J, the Jacobian of F(z):

J=J Jp-Jp1+...o 1
where J; is the Jacobian of T; evaluated at T;_1(T;_a(...(T4(z))...); J is the Jacobian of

F evaluated at argument T,(Tp—1(...(T1(z))...).
A natural high-level program to evaluate F is given below where we let yo denote z:

fori=1:p
“Solve” for y;: yi — F(yi1) = 0

“Solve” for z: z — F(y,) = 0.
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Clearly this program is a special case of the general form Fg given in Figure 2, witl
corresponding Jacobian matrix Jg:

-J1 I
-Jy I

Jg = : -

-, I
J

If a Newton step is required, it can be much more costly to determine J directly via
AD compared to determining Jg using AD and then solving the extended system (4) to
determine the Newton step.

For example, consider the special case of a dynamical system,

F(z) = T(T(...(T())...)

where 7 : R* — R is a square nonsingular mapping, and F involves p applications of 7.
Let J; denote the Jacobian of 7" at the argument T;_;(...(Ty(z)---); assume that T yields

a tri-diagonal Jacobian matrix.

For all p sufficiently large the Jacobian matrix J will be dense; hence determination of J
by direct application of automatic differentiation requires O(n-w(F)) = O(n-p-w(T)) flops.
Therefore, direct determination of J followed be a direct solve requires O(n - p-w(T) + nd)
flops. However, the determination of Jg requires O(p - w(T')) flops and solution of the
banded extended system takes O(n - p) flops for a total of O(p-w(T) + n-p) flops -
generally, a much more attractive order of work.

4.2 Generalized Partial Separability
We define a generalized partially separable vector-valued function,

F(:L‘) = F(yl,y29-"7yp); Y= le(z)a 1= 1,2,'-'>p'

Note that if function F is simply a summation then F reduces to the usual notion of partial
separability.

Following the general form given in Figure 2, F can be computed with the following
program,

fori=1:p
“Solve” for y;: yi—Ti(z) = 0
“Solve” for z : z — F(yhy%---ayp) =0

Of course, this program can be inefficient if some of the functions T; share common
sub-expressions. Therefore a more general program can be written if we define a “stacked”
vector YT = (47 .. nyg ) and a corresponding vector function

Ty(z)
~ Tz z
F(z) = ( )
Tp(z)

This yields the simple 2-liner:
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«Golve” for Y : Y — F(z)=0

“Solve” for z: z = F(yl,yz,...,yp).

The general extended system (4) reduces to

-—Jl bz 0

—jz o 0

: by | = :

_J, : 0
J2 oYp -F

where J is broken into different components J; corresponding t0 variables y;. I F is
partially separable in the usual fashion, i.e., function F is a summation, then each matrix
J; is an identity matrix. It is clear that the computation of Jg will, in general, be
considerably more economical than than the stra,ightforward application of AD to detemine
J = Yizip J; - J; via AD. For example, Jacobians J, J can be determined by applying
the bi-coloring technique [Coleman1995a.] to F and F respectively. And of course if F' is
simple enough, J will be constant (and trivially available).

If the function F is itself non-trivial, it may be advantageous to exploit this by
expanding the 2-line program. For example, let I; be an index set indentifying a subset
of {1,...P}, J = 1,...,% Further, let ﬁ'j be a vector function, j=1,...,1 and suppose
FY) = a1 F(C I y;). So the program to evaluate F(Y) can be written

Clearly the evaluation of this “group partially separable” function is easily expressed in the
lower Hessenberg form given in Figure 2; the corresponding J acobian matrix Jg is likely to
be sparse and economically computable via the AD techniques in [Coleman1995a]

4.2.1 Product Function A special case of the generalized partially separable form is a
product function: Suppose that F:Rr—>R"isa component-wise product of functions:

F(z) = Fi(z)-* Fy(z).x -0 % Fp(z),

where F; : ®" — g, 1 =1:m, and the notation “ %" indicates component-wise
multiplication (following the MATLAB convention). A natural way to evaluate F at an
argument Z is t0 execute the program,

fori=1:p

“Golve” for yi: Yi — Fi(z) = 0

“Solve” for z 1z — Y1 kyp = 0
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The extended Newton system (4) simplifies to:

—Jl I bz 0
—Ja I oy 0
: ., 5'!/2 = :
~J, I : 0
0 I D] .D2 e Dp éyp -F

where D; is a diagonal matrix, D; = [T, i 4ag(yi), and “diag(y;)” is the diagonal
matrix with the vector y; defining the diagonal in the natural order. Note that the Jacobian

of F reduces to
J =3 Jiz)- D;.

Clearly, it is entirely possible that J is relatively dense even when each component Jacobian
J; is very sparse; hence, direct determination of J via AD is usually unattractive compared
to the calculation of the extended J acobian, Jg, via AD (e.g., using the bi-coloring approach
[Coleman1995a)).

4.3 A Remark

Our two main examples, composite functions and generalized partially separable functions,
are complementary in a structural sense. The evaluation of a composite function is a
depth computation: each subsequent intermediate variable ¥ depends on the previous

intermediate y;_;. The computational graph of a composite function is a long chain: See
Figure 3.

L Z 1
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L Yo 1
_ A
I I A
. F
: #- ° .\VE
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L X ]
Fic. 4. Generalized partially
Fic. 3. Composite function separable function

In contrast, generalized partially separable functions are primarily breadth computa-
tions: typically, the intermediate variables y; are relatively independent of each other: it
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is the final computation z = F(y1,%2,...,Yp) that binds the intermediates together. The
computational graph is short and fat; see Figure 4.

Despite such grossly different structures the lower Hessenberg format, illustrated in
Figure 2, is applicable in both cases: this view represents a convenient way to program
the evaluation of F and allows for the efficient application of AD tools to determine the
Jacobian matrix and/or the Newton step.

5 Conclusions

This paper is concerned with the efficient determination of Jacobian matrices and/or
Newton steps of large systems of nonlinear equations using automatic differentiation. We
review a tecent graph-coloring technique to enable the efficient determination of sparse
Jacobian matrices. However, a major point of this paper is that many large-scale problems
exhibit dense but structured Jacobian matrices. We show how to exploit structure, in a
general way, to allow for the efficient application of AD tools.

Owur view is that the evaluation of a large-scale function is often naturally programmed
in a lower Hessenberg form Fg, illustrated in Figure 2. The “extended” function Fg
involves a set of intermediate vectors {y;} yielding a Jacobian matrix Jg with respect to
both the original variables and the set of internal vectors {y:}. Often, it is considerably
more economical to compute Jg and/or the related extended Newton step as opposed to
direct determination of J via AD. This is our proposal.

As our examples indicate the selection of intermediate vectors y; is often a natural
product of stating a natural coarse-level program to evaluate F. Typically this lower
Hessenberg structure is available to the user. In this situation we propose that a pre-
compiler, software to exploit this general structure and enable the “surgical” use of AD
software, would serve a useful role.

In principle such a pre-compiler can be built based on a lower-Hessenberg high-level
program to evaluate F. In many cases this is practical. However, an interesting question
is, given an arbitrary (but correct!) program to evaluate F, is it possible to automatically
recover the lower Hessenberg form Fg? Of course a fine-grained lower Hessenberg structure
is always available from the compiled program [Griewank1990a); however, we are concerned
with the natural high-level (coarse-grained) lower-Hessenberg form. This is an open
question.




